Lecture XI
Homogeneous Linear Equations with Constant Coefficients
Again, let us consider the homogeneous linear second-order ODE, however this time with
constant coeflicients

ay” + by +cy = 0. (1)

For such a case, we will try to plug in a solution of the form y = €™* and see what results,
ie.
a(e™) +b (™) +c(e™) =0
am?®e™ + bme™ + ce™ =0

am?® +bm + ¢ = 0.

It turns out we are left with a quadratic equation in m, called the auxiliary equation. If
we solve this quadratic equation, we will have one or two values for m and so one or two
corresponding solutions (however, we know there should be two solutions in the fundamental
set). The cases are, classically,

1) b* — 4ac > 0 — my and my are distinct.

2) b2 — 4ac = 0 — m, and my are real and equal.

3) b — 4ac < 0 — my and my are complex conjugates.

Let us consider each case one by one. In the first case, m; and my are distinct, therefore

both the solutions y; = ¢1™'* and ys = c2e™2* must form the general solution.
Case 1: Distinct Real Roots — y = c1€™* + coe™?". (2)

In the case of the equation y” — k?y = 0, which has two distinct real roots, it is also common

to write the solution in the form

y = ¢y sinh (kx) + o cosh (kx).

In the second case, both the roots are equal, i.e. m; = ms = m. In this case, we know

T

that y; = c1e™* must be a solution, however we are missing the second solution. It can be



obtained via the reduction of order technique, namely
€2mx
Yo = emx/ —dr = ze";

note that in the case of a double root, the differential equation could be written as y” —

2my’ + m?y = 0, where in equation (1) we have b = —2ma and ¢ = m?a. The general

solution is therefore
Case 2: Repeated Real Roots — y = c1€™* + cowe™". (3)

Finally, we arrive at the third case, however it requires more work. In this case, the roots
are complex conjugates m;, = a £ i and so we have the general solution y = ¢ e(*+##)e 4
Goel@)7 where ¢ and & are complex. In practice however, we do not desire the imaginary

part of the solution, so we will work to extract only the real part

y = e [¢1 (cos (Bx) +isin (Bx)) + ¢ (cos (Bx) — isin (fx))]
y = e [(é + &) cos (Bx) + i (&1 + &) sin (Sz)]

Re(y) = € [Re (¢1 + é&) cos (Bx) + Re(i (¢; + &) sin (Bx)] .

We can simply label the real parts of the constants above as ¢; and ¢, respectively, yielding

the general real solution
Case 3: Complex Conjugate Roots — y = €** [¢; cos (Bz) + ¢y sin (Bx)]. (4)

These ideas in fact extend to nth-order linear ODEs with constant coefficients, namely the

solutions of

any™ + an_ay™ T+ ay +agy =0

can be described as follows. Any distinct root m; of the auxiliary equation will have a

corresponding solution of the form y; = ¢;e™*, for instance, if all the n roots were distinct,



the general solution would be
y = cre" + coe™* + - 4 et

If any root m in the auxiliary equation is repeated k times (we say the root has multiplicity

k), then we must include its & linearly independent solutions

In a similar fashion, all the distinct complex conjugate root pairs «; £ i3; will have their

corresponding solution of the form

y; = ™" [ej1 cos (Bjx) + cjpsin (B57)]

and for any complex conjugate roots of multiplicity k, we must include its 2k linearly inde-

pendent solutions

€% cos (fx), xe™® cos (Bx), %€ cos (Bx), ..., tF Ve cos (Bx)

% sin (), xe®® sin (Bx), %€ sin (fz), ..., ¥ Ve sin (Bz).

EXAMPLE
Solve o —y" + 4y’ — 4y = 0.

3 —m? +4m — 4 = 0, which can be factored as

We must first get the auxiliary equation m
(m —1)(m? + 4) = 0. The roots are therefore m; = 1 and ma3 = +2i (i.e. a =0, § = 2).

The general solution can now easily be assembled
y = c1e” + g cos(2x) + c3sin(2z).

Lecture Problems (§3.3): 2, 3, 16
Tutorial Problems (§3.3): 3, 7, 20, 30, 40
Suggested Problems (§3.3): 1, 5, 9, 29, 31, 33, 39, 41



BONUS NOTES

None.
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