Lecture XXI
Solution by Diagonalization
The homogeneous linear system X’ = AX in which each z’; is expressed as a linear combi-
nation of xy, s, ..., z, is said to be coupled. If the coefficient matrix A is diagonalizable,
then the system can be uncoupled in that each z; can be expressed solely in terms of x;. If
the matrix A has n linearly independent eigenvectors then we can find a matrix P such that
P~'AP = D, where D is a diagonal matrix whose entries are the eigenvalues of A and P is

a matrix whose columns are the corresponding eigenvectors of A. The procedure follows.

Given the homogeneous linear system of n ODEs

X' = AX,

where the eigenvalues of A are distinctly A\q, Ag, ..., A, with corresponding eigenvectors Ky, Ko, ...

we can formulate the matrices P and D as
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We can then simplify the system with the substitution X = PY

X' =AX
PY' = APY
Y =P 'APY
Y' =DY.
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The solution of the system Y’ = DY is obviously
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and so we can obtain the solution vector X then using X = PY.
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BONUS NOTES

None.
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