
Lecture XX

Homogeneous Linear Systems

In this lecture, we will look at how to solve the homogeneous linear system X′ = AX.

We will take a similar approach as was done for homogeneous linear nth-order ODEs with

constant coefficients, namely assume the solution X = Keλt, which gives

X′ = AX

λKeλt = AKeλt

(A− λI)K = 0.

This is a classic eigenvalue problem. Nontrivial solutions K 6= 0 to this problem will exist

only for values of λ such that det(A − λI) = 0, called the characteristic equation. The

solutions, λ, to the characteristic equation are called the eigenvalues, and the corresponding

vectors K are called the eigenvectors. We can distinguish three distinct cases for the solution

depending on the eigenvalues.

In the first case, when the n×n matrix A possesses n distinct real eigenvalues λ1, λ2, ..., λn,

then a set of n linearly independent eigenvectors K1,K2, ...,Kn can always be found and

X1 = K1e
λ1t,X2 = K2e

λ2t, ...,Xn = Kne
λnt is a fundamental set of solutions of X′ = AX.

The general solution would then be

X = c1K1e
λ1t + c2K2e

λ2t + · · ·+ cnKne
λnt. (1)

EXAMPLE

Solve the following system of ODEs

X′ =

1 −4

1 6

X.
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In solving such a system, we must first determine the eigenvalues of the matrix A, namely∣∣∣∣∣∣1− λ −4

1 6− λ

∣∣∣∣∣∣ = λ2 − 7λ+ 10 = (λ− 2)(λ− 5) = 0.

This system therefore has the two distinct eigenvalues λ1 = 2 and λ2 = 5. We can then find

their corresponding eigenvectors from (A− λjI)Kj = 0, giving

K1 =

 4

−1

 and K2 =

 1

−1

 .
The general solution is then

X = c1

 4

−1

 e2t + c2

 1

−1

 e5t.

In the second case, when we have a repeated eigenvalue, we have to consider two sub-cases.

1) For some n×n matrices A, it may be possible to find m linearly independent eigenvectors

K1,K2, ...,Km corresponding to a single eigenvalue λ1 of multiplicity m ≤ n. In this case,

the general solution of the system contains the linear combination

c1K1e
λ1t + c2K2e

λ1t + · · ·+ cmKme
λ1t. (2)

2) If there is only one eigenvector corresponding to the eigenvalue λ1 of multiplicity m, then

m linearly independent solutions of the form

X1 = K1e
λ1t

X2 = K1te
λ1t + K2e

λ1t

· · ·

Xm = K1
tm−1

(m−1)!
eλ1t + K2

tm−2

(m−2)!
eλ1t + · · ·+ Kme

λ1t,

(3)

where Kj are column vectors, can always be found. We can obtain each Kj by solving each
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of the following one by one
(A− λI)K1 = 0

(A− λI)K2 = K1

(A− λI)K3 = K2

· · ·

(A− λI)Km = Km−1.

EXAMPLE

Solve the following system of ODEs

X′ =

−1 −2

2 3

X.

The eigenvalues of the above system are obtained from∣∣∣∣∣∣−1− λ −2

2 3− λ

∣∣∣∣∣∣ = λ2 − 2λ+ 1 = 0,

giving λ1,2 = 1. There is only one eigenvector (which of course can be multiplied by any

constant) associated to λ = 1, namely

K1 =

 1

−1

 .
Since there are no other distinct eigenvectors that can be found for λ = 1, we must search

for the vector K2 from (A− λI)K2 = K1, i.e.−2 −2

2 2

K2 =

 1

−1

→ K2 =

 0

−1
2

 .
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The general solution is then given by

X = c1

 1

−1

 et + c2

 1

−1

 t+

 0

−1
2

 et.

The third case is when we have complex conjugate eigenvalues λ1,2 = α ± iβ. Following

directly from the first case, we can deduce the following theorem.

THEOREM: Solutions Corresponding to a Complex Eigenvalue

“Let A be the coefficient matrix having real entries of the homogeneous system X′ = AX,

and let K1 be an eigenvector corresponding to the complex eigenvalue λ1 = α+ iβ, α and β

real. Then

K1e
λ1t and K̄1e

λ̄1t

are solutions of X′ = AX.” (Zill & Wright, 2014)

We therefore have the two solutions

K1e
λ1t = K1e

αt(cos (βt) + i sin (βt))

K̄1e
λ̄1t = K̄1e

αt(cos (βt)− i sin (βt)).

Owing to the superposition principle, we can rewrite these solutions as

X1 =
1

2
(K1e

λ1t + K̄1e
λ̄1t) =

1

2
(K1 + K̄1)eαt cos (βt)− i

2
(−K1 + K̄1)eαt sin (βt)

X2 =
i

2
(−K1e

λ1t + K̄1e
λ̄1t) =

i

2
(−K1 + K̄1)eαt cos (βt) +

1

2
(K1 + K̄1)eαt sin (βt).

Noting that Re(K1) = 1
2
(K1 + K̄1) and that Im(K1) = i

2
(−K1 + K̄1), the two corresponding

real solutions can therefore be expressed as

X1 = eαt[B1 cos (βt)−B2 sin (βt)]

X2 = eαt[B2 cos (βt) + B1 sin (βt)]

where B1 = Re(K1) and B2 = Im(K1).

(4)
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It is simpler however not to remember the above formula, but rather to treat the problem

as was done in the first case and then to make use of Euler’s identity (i.e. e±iβt = cos(βt)±

i sin(βt)).

EXAMPLE

Solve the following system of ODEs

X′ =

 1 4

−1 1

X.

Again, we begin by finding the eigenvalues from∣∣∣∣∣∣1− λ 4

−1 1− λ

∣∣∣∣∣∣ = λ2 − 2λ+ 5 = 0,

giving λ1,2 = 1± 2i. From here, we can determine the eigenvectors

K1 =

2

i

 and K2 =

 2

−i

 .
The general solution would then be

X = et

c1

2

i

 e2it + c2

 2

−i

 e−2it

 ,

however since we will only be interested in the real part, let us use Euler’s identity

X = et

c̃1

2

i

 [cos(2t) + i sin(2t)] + c̃2

 2

−i

 [cos(2t)− i sin(2t)]

 .

Upon multiplying out we obtain

X = et

c̃1

2 cos(2t)

− sin(2t)

+ i

2 sin(2t)

cos(2t)

+ c̃2

2 cos(2t)

− sin(2t)

− i
2 sin(2t)

cos(2t)

 ,

5



or

X = et

(c̃1 + c̃2)

2 cos(2t)

− sin(2t)

+ i(c̃1 − c̃2)

2 sin(2t)

cos(2t)

 .

Since we are interested only in the real part, relabeling c1 = Re(c̃1+c̃2) and c2 = Re(i(c̃1−c̃2)),

we have as the general solution

X = et

c1

2 cos(2t)

− sin(2t)

+ c2

2 sin(2t)

cos(2t)

 .

Note that the answer is the same as if we applied the form of equation (4) directly, i.e.

X = c1e
t

2

0

 cos(2t)−

0

1

 sin(2t)

+ c2e
t

0

1

 cos(2t) +

2

0

 sin(2t)

 .

Lecture Problems (§10.2): 2, 24, 36

Tutorial Problems (§10.2): 3, 14, 22, 25, 38

Suggested Problems (§10.2): 1, 13, 21, 23, 35, 37

6



BONUS NOTES

None.
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