Lecture XX
Homogeneous Linear Systems
In this lecture, we will look at how to solve the homogeneous linear system X' = AX.
We will take a similar approach as was done for homogeneous linear nth-order ODEs with

constant coefficients, namely assume the solution X = Ke*, which gives

X' = AX
AKeM = AKeM

(A — ADK = 0.

This is a classic eigenvalue problem. Nontrivial solutions K # 0 to this problem will exist
only for values of A such that det(A — AI) = 0, called the characteristic equation. The
solutions, A, to the characteristic equation are called the eigenvalues, and the corresponding
vectors K are called the eigenvectors. We can distinguish three distinct cases for the solution

depending on the eigenvalues.

In the first case, when the n x n matrix A possesses n distinct real eigenvalues Ai, \o, ..., Ay,
then a set of n linearly independent eigenvectors Ky, Ko, ..., K,, can always be found and
X, = KMt X, = Koet .. X, = K, e is a fundamental set of solutions of X' = AX.

The general solution would then be

X = clKleAlt —+ CQKQe)Qt + 4 cnKne/\"t. (1)

EXAMPLE
Solve the following system of ODEs

X' = X.
1 6



In solving such a system, we must first determine the eigenvalues of the matrix A, namely

1—\ —4
=N -TA+10=A-2)(A=5)=0.
I 6-X

This system therefore has the two distinct eigenvalues A\ = 2 and Ay = 5. We can then find

their corresponding eigenvectors from (A — M\, I)K; = 0, giving

4
K, = and Ky =
-1 -1

The general solution is then

In the second case, when we have a repeated eigenvalue, we have to consider two sub-cases.
1) For some n x n matrices A, it may be possible to find m linearly independent eigenvectors
K1, Ko, ..., K,, corresponding to a single eigenvalue \; of multiplicity m < n. In this case,

the general solution of the system contains the linear combination
A1t A1t At
aKie' + coKoe + -+ e K et (2)

2) If there is only one eigenvector corresponding to the eigenvalue A; of multiplicity m, then

m linearly independent solutions of the form

X1 = K1€)‘1t
Xy = KiteM! 4 Koett!

tm_l
(m—1)!

tm_2
(m—2)!

X,, =K; eMt 4 K, eMt 4. K eM

where K; are column vectors, can always be found. We can obtain each K; by solving each



of the following one by one
(A-X)K; =0
(A - DK, = K;
(A - NDK; =K,

(A= ADK,, = Ky

EXAMPLE
Solve the following system of ODEs

The eigenvalues of the above system are obtained from

—1-X =2
23—\

=N -2\+1=0,

giving A; o = 1. There is only one eigenvector (which of course can be multiplied by any

constant) associated to A = 1, namely

Since there are no other distinct eigenvectors that can be found for A = 1, we must search

for the vector Kj from (A — A\I)K, = Kj, i.e.

-2 =2 1 0
K, = — Ky =
2 2 -1 —

NI



The general solution is then given by

X =0 el + ¢y t+ el.

The third case is when we have complex conjugate eigenvalues \; o = a £ i3. Following

directly from the first case, we can deduce the following theorem.

THEOREM: Solutions Corresponding to a Complex Eigenvalue
“Let A be the coefficient matrix having real entries of the homogeneous system X' = AX,
and let K; be an eigenvector corresponding to the complex eigenvalue \y = a4+ i3, a and 3

real. Then

KMt and KjeMt

are solutions of X' = AX.” (Zill & Wright, 2014)

We therefore have the two solutions

KMt = K e (cos (Bt) + isin (ft))

Keht — K e (cos (Bt) — isin (Bt)).
Owing to the superposition principle, we can rewrite these solutions as
1 5 1 = ' 7
X, = §(Kle“t + KM = 5 (K1 + K )e* cos (Bt) — %(—Kl + Ky)e sin (5t)

. o - B 1 _
X = S(—Kie" + Kieh) = S(—Ki + Ky)e™ cos (31) + 5 (Ko + Ky)e sin (51).

Noting that Re(K;) = 1(K; +K;) and that Im(K;) = £(—K; +Kj), the two corresponding

real solutions can therefore be expressed as

Xy = e*[Bj cos (ft) — By sin (5t)]
Xo = e®[By cos (St) + By sin ([t)] (4)
where B; = Re(K;) and By =Im(K;).



It is simpler however not to remember the above formula, but rather to treat the problem

as was done in the first case and then to make use of Euler’s identity (i.e. e = cos(8t) +

isin(ft)).

EXAMPLE
Solve the following system of ODEs

A I B
X' = X.
-1 1

Again, we begin by finding the eigenvalues from

1—A
-1 1-2A

=\ =2\ +5=0,

giving A; o = 1 & 2¢. From here, we can determine the eigenvectors

2 2
Kl — and KQ =
1 —1
The general solution would then be
21 . 2 _
X = Bt C1 . 62“ + Co ) 6_2n )
i —1

however since we will only be interested in the real part, let us use Euler’s identity

2 2
X =c"e | [cos(2t) +isin(2t)] + G B [cos(2t) — i sin(2t)]

Upon multiplying out we obtain

2 cos(2t 2sin(2t 2 cos(2¢ 2sin(2t
oo la ([resen]  fosmen]) L ([2eosn] | Tosnen ]|\ |
— sin(2t) cos(2t) — sin(2¢) cos(2t)



). | 2c0s(2t) | 2sin(2¢)
X =e€<(¢1+6) +i(¢ — Co)
— sin(2t) cos(2t)

Since we are interested only in the real part, relabeling ¢; = Re(¢14¢;) and ¢; = Re(i(¢1—¢9)),
we have as the general solution
2 cos(2t) 2 sin(2t)

X =e{ ¢ + ¢
— sin(2t) cos(2t)

Note that the answer is the same as if we applied the form of equation (4) directly, i.e.

]2 ol 10 2|
X =qe cos(2t) sin(2t) | + ce cos(2t) + sin(2t)
0 1 1 0

Lecture Problems (§10.2): 2, 24, 36
Tutorial Problems (§10.2): 3, 14, 22, 25, 38
Suggested Problems (§10.2): 1, 13, 21, 23, 35, 37



BONUS NOTES

None.
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