
Lecture III

Separable Equations

In this lecture, we will learn our first method to solve ordinary differential equations. In the

case of a first-order ODE, not necessarily linear in the dependent variable (y), of the form

dy

dx
= f(x, y) (1)

we can distinguish a particular case where the function f(x, y) can be expressed as the

product of two separate functions of x and y alone, namely where we can write f(x, y) =

g(x)h(y). This is known as a separable first-order ODE, and we may proceed with its

solution as follows:

Given a separable first-order ODE
dy

dx
= f(x, y),

we will be able to write f(x, y) = g(x)h(y), giving

dy

dx
= g(x)h(y). (2)

We can divide by h(y) on both sides

1

h(y)

dy

dx
= g(x) or more simply p(y)

dy

dx
= g(x)

and then integrate both sides with respect to x

∫
p(y)

dy

dx
dx =

∫
g(x)dx.

Noting that y is in fact a function of x, we can simplify the left-hand side of the above

equation since

dy =
dy

dx
dx,
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giving ∫
p(y)

dy

dx
dx =

∫
p(y)dy =

∫
g(x)dx.

The equation ∫
p(y)dy =

∫
g(x)dx+ c (3)

gives the solution of the separable first-order ODE upon integration (it is important not

to forget the resulting constant of integration); note that the constant of integration

c is explicitly shown here. If the resulting equation can be rearranged to give an expression

of the form y = φ(x), this in an explicit solution, if it is not possible to rearrange it in this

way, we have an implicit solution φ(x, y) = 0.

Ultimately, solving separable first-order ODEs simplifies to rearranging the original ODE

such that all the y’s and dy’s are on one side of the equation and all the x’s and dx’s are on

the other (treating dy/dx as though it were an algebraic fraction thanks to the chain rule

for differentiation).

EXAMPLE

Solve
dy

dx
=

y2

1 + 2x
.

First, we will separate the x’s and y’s

dy

y2
=

dx

1 + 2x

and then integrate both sides ∫
dy

y2
=

∫
dx

1 + 2x

giving

−1

y
=

1

2
ln |1 + 2x|+ c̃.

In this case, we have an explicit solution since we can express y as an explicit function of x
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(where c = 2c̃)

y = − 2

ln |1 + 2x|+ c
.

EXAMPLE

Solve (2y − 1) ey
2

cos(x)
dy

dx
= ey sin(x) with y(0) = 0.

Again, we start by separating the x’s and y’s

(2y − 1) ey
2−ydy = tan(x)dx.

Integrating both sides then gives

ey
2−y = − ln | cos(x)|+ c.

We can then make use of the initial condition y(0) = 0 giving c = 1. The resulting implicit

solution is

ey
2−y = − ln | cos(x)|+ 1.

Lecture Problems (§2.2): 19, 28

Tutorial Problems (§2.2): 2, 4, 13, 24, 30

Suggested Problems (§2.2): 7, 9, 23, 25
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BONUS NOTES

The method of solving separable equations ultimately boils down to a procedure.

Can the equation be expressed in the form below?

dy

dx
= f(x, y) where f(x, y) = g(x)h(y)

1) Put all the y’s and dy’s on the left-hand side of the equation.

2) Put all the x’s and dx’s on the right-hand side of the equation.

3) Integrate both sides (don’t forget the constant of integration on the right-hand side).

4) Solve for y (if possible) and simplify the result.

For the more curious reader, we might ask whether we can generalize the method of separa-

tion of variables to the nth-order equation

d(n)y

dx(n)
= f(x, y)

in the case where we can express f(x, y) as the product of two separate functions of x and

y alone as was learned in this lecture (f(x, y) = g(x)h(y)). In fact, this is not at all obvious

because we can’t treat d(n)y/dx(n) as an algebraic fraction as we did for dy/dx; this was only

possible as a consequence of the chain rule in deriving equation (3). There are, however,

cases that we can solve by separation of variables after using a substitution. For example,

let’s look at the second-order ODE
d2y

dx2
= f(y).

We can use the substitution

u =
dy

dx

to reduce the second-order derivative as follows

d2y

dx2
=

du

dx
=

du

dy

dy

dx
= u

du

dy
.

4



The differential equation then reduces to the separable equation

u
du

dy
= f(y)

having solution

u =

√
2

∫
f(y)dy + c1

after which we must solve for y from

dy

dx
=

√
2

∫
f(y)dy + c1.

The complete solution (likely implicit in y) would be given by

x =

∫
dy√

2
∫
f(y)dy + c1

+ c2,

where the constants of integration c1 and c2 are explicitly shown.
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